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Abstract

Vibration acceleration levels on large space platforms exceed the requirements of many

space experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is

being built by the NASA Marshall Space Flight Center to attenu.ate these disturbances to

acceptable levels. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to levitate and isolate

payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration,

relative position, and relative orientation measurements are fed to a state-space controller. The

controller, in turn, determines the actuator cusTents needed for effective experiment isolation.

This paper presents the development of an algebraic, state-space model of g-LIMIT, in a form

suitable for optimal controller design. The equations are first derived using Newton s Second

Law directly, then simplified to a linear form for the purpose of controller design.
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Introduction

Acceleration measurements on the U.S. Space Shuttle and the Russian Mir Space Station

have shown that on-orbit acceleration environments are noisier than once expected [1]. The

acceleration environment on the International Space Station (ISS) likewise is not as clean as

originally anticipated; the ISS will not meet its microgravity requirements without the use of

isolation systems [1], [2]. While the quasi-static acceleration levels due to such factors as

atmospheric drag, gravity gradient, and spacecraft rotations are on the order of several micro-g,

the vibration levels above 0.01 Hz exceed 300 micro-g rms, with peaks typically reaching milli-g

levels [3], These acceleration levels are sufficient to cause significant disturbances to many

experiments that have fluid or vapor phases, including a large class of materials science

experiments [4].

The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is designed to

isolate experiments from the high frequency (>0.01 Hz) vibrations on the Space Shuttle and the

ISS, while passing the quasi-static (<0.01 Hz) accelerations to the experiment [5]. The

acceleration-attenuation capability of g-LIMIT is limited primarily by two factors: (1) the

character of the umbilical required between the g-LIMIT base (stator) and the g-LIMIT

experiment platform (flotor), and (2) the allowed stator-to-flotor rattlespace. A primary goal in g-

LIMIT design was to isolate at the individual experiment, rather than entire rack, level; ideally g-

LIMIT isolates only the sensitive elements of an experiment. This typically results in a stator-to-

flotor umbilical that can be greatly reduced in size and in the se_wices it must provide. In the

current design, g-LIMIT employs three umbilicals to provide experiments with power, and with

data-acquisition and control services [6].



In order to designcontrollers for g-LIMIT it was necessaryto develop an appropriate

dynamicmodelof the system. The presentpaperpresentsanalgebraic,state-spacemodelof g-

LIMIT, in aform appropriatefor optimalcontrollerdesign.

Problem Statement

The dynamic modeling and microgravity vibration isolation of a tethered, one-dimensional

experiment platform has been studied extensively by Hampton, et al. [5, 7, 8]. It has been found

that optimal control techniques can be effectively employed using a state-space system model,

with relative-position, relative-velocity, and acceleration states. In these studies the experiment

platform was assumed to be subject to Lorentz (voice-coil) electromagnetic actuation, and to

indirect (umbilical-induced) and direct translational disturbances.

The task of the research presented below was to develop a corresponding state-space

model for g-LIMIT. Translational and rotational relative-position and relative-velocity, and

translational acceleration states, were to be included in the systern model. The g-LIMIT dynamic

model must incorporate indirect and direct translational and rotational disturbances.

System Model
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A schematic of g-LIMIT is depicted in Figure 1. The stator, fixed in reference

frame 1_), is rigidly mounted to the ISS. The flotor, frame O, is magnetically levitated above the

stator by six Lorentz actuators (two shown), each consisting of a fiat racetrack-shaped electrical

coil, with an active linear (straight) region positioned between a set of Nd-Fe-Bo supermagnets.

For more information on the basic actuator design see Reference [9]. The coils and the

supermagnets are fixed to the stator and flotor, respectively. Control cunents passing through the

coils interact with their respective supermagnet flux fields to produce control forces used for

flotor isolation and disturbance attenuation.

The flotor has mass center F* and a dextral coordinate system with unit vectors _1' -f_,'

and _._, and origin F0. The stator (actually, stator-plus-ISS) has mass center S '_ and a dextral

coordinate system with unit vectors -_l, _2, and _3, and origin S0. The inertial reference

frame t_ is similarly defined by _, 22, and _3, and origin N 0. The umbilical is attached to the

stator at S,,, and to the flotor at F,,. When the flotor is centered in its rattlespace (the "home"

position), F* and F,, are located at stator-fixed points F_7, and F,,h, respectively.
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Schematic of g-LIMIT "Figure 1, -'" "

State Equations of Motion

Preliminaries

Let E be some flotor-fixed point of interest for which the acceleration is to be determined.

dt r& E andIf E has inertial position rNoE , then its inertial velocity and acceleration are '-"&F -

£"VOE- 7 LTkl"NoE)j ' respectively. (The pre-superscript indicates the reference frame assumed

fixed, for purpose of differentiation. The first and second subscripts indicate the vector origin and

terminus, respectively.) The angular velocity and angular acceleration of the flotor with respect to

the inertial frame are represented by Nm F and NO:F respectively, where "Vc_l:= N'---J-/(N_mv).
.... dt
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Let _F be the resultant of all external forces acting on the flotor; M F/t:* (or simply M), the

moment resultant of these forces about F*; m, the flotor mass; and I F/F* (or l ), the central inertia

dyadic of the flotor for L_' ./?,' and ,L._'

expressed in the following two forms:

Then Newton's Second Law for the flotor can be

__F= m'_/NoF* (Eq. 1)

From Equation (2),

NotF=I__-''[M--_F×(I'Nm___F)]. (Eq. 3)

Equation (1) presents the translational equations of motion for the system (in vector form)

in terms of the acceleration of flotor mass center F*. However, the primary objective of the

control system design is to attenuate the absolute acceleration of point E, not of point F*.

Consequently, it will be useful to find an expression for _:NoF* in terms of _NoE" The three _i

measure numbers of ):NoL. Will be used as states in the state equations ultimately to be used for

controller design.



In additionto the aboveobjective,the controllermust preventthe flotor fi'om exceeding

its rattlespacelimits, i.e., from bumpinginto thestator. It is desirable,then,thatrelative-position

and relative-velocity information (both translationaland rotational) also be included in the

equationsof motion for controllerdesign. The _;measurenumbersof the relativepositionand

relative velocity forF*, from its home position Fh*, will provide six translational states in the

system state equations. Six corresponding rotational states will be included as well. The

remainder of this paper will be concerned with expressing the system equations of motion

[Equations (l) and (2)] in terms of the selected fifteen states.

Translational Equations of Motion

To develop the translational equations, in terms of the chosen states, begin with the

following: ;..... = _ - - r * (Eq. 4)--FhF £ NoE + rE.F* ENoS 0 -SoF h •

Differentiation of Equation (4) yields

_. * * • Noo F . N S •
_FhF = £No E + __ X EEF* -- ENoSo -- O} XrSoFh . (Eq. 5)

A second differentiation gives

;: .. .. + Ned ,: (--F hF = rNoE __ XrEF*+ N(1) X _

__ __ --50F h '

x r_EF* )- r- No.so- _ix s x rsor_ 7
(Eq. 6)

Substitution for N___Ffrom Equation (3) into Equation (6) yields

--t" h F = r NoE + . _ __ NO,) F • .. _
5' RE *

--S 0 F h
(Eq. 7)

In these equations, from the addition theorem for angular velocities,



Nmm_F=Nms + SmF. (Eq. 8)

Under the assumptions that NcoS and N_s are negligibly small and, therefore, that

Equation (7) reduces to

J;NoSo .w. J;NoSu ' (Eq. 9)

rr{_11 {_

Linearization about ScoF = 0 yields the following result:

): "" { ._34_} ×rEF*-ENOS,,- (Eq. 11)_t.'hF F NoE + L -1 ..

(Note that assuming Nm_S tO be negligible does not imply that reference flames (_} and O are

identical; it means rather that {_) can be treated as if it is in pure translation relative to O, for

the frequencies of interest.)

Equation (11) describes F,,_F* in terms of the acceleration of an arbitrary flotor-fixed point E.

For E located at F*, Equation (11) can be used straightforwardly with Equation (1) to yield

--k},F = 7 --FNoS"' (Eq. 12)

where the second term on the right-hand-side is the indirect disturbance acceleration. Define now

an (unknown) indirect translational acceleration disturbance input to the flotor, applied at the

stator end of the umbilical:

Cl in = r NoSu •

Substitution from Equation (13) into Equation (12) yields the following:

--/'),F _-" g L -- ain"

(Eq. 13)

(Eq. 14)



Turn next to JaNo E . Substituting from Equation (14) into Equation (11), using Equation

(13), and solving for _,','0L, one obtains the following:

}:NoE_--(L1F + l-' "M_M_xI'_F* E • Eq. 15)
\mj =

Appropriate expressions for E and M will now be determined in terms of the position and

velocity of the flotor, relative to the stator. These expressions will be substituted into Equations

(14) and (15) to obtain more useful representations of the equations of motion.

The force resultant F' is the vector sum of the six actuator (coil) forces F i. (i = 1..... 6), with

resultant F,.; of the umbilical force F,,, caused by umbilical extensions and rotations from the

umbilical home position; of the (unknown) direct disturbance forces, with resultant F_,t; and of the

gravitational force Es. Gravity may be neglected for a space vehicle in fiee-fall orbit. (Gravity

gradient and fluctuations in the gravitational field are lumped together in F,j). The moment

resultant M is the vector sum of the various moments acting on the flotor. These moments are

from four sources: the coil forces, the umbilical forces, the umbilical moment, and the direct

disturbance moment. Let M,. represent the moment about F*, due to the respective coil forces

E,, assumed to act at their respective coil centers Bi. Represent by M,¢ the moment about F*

due to the umbilical force F,,. Let M,, represent the umbilical-transmitted moment, due (1) to

translations of umbilical attachment point F,, fi'om its home position F,,h, (2) to rotations about

F,,, of the flotor relative to the stator, from the home orientation, and (3) to umbilical bias

moment in the home position. Finally, let Mj represent the (unknown) moment due to the direct-

disturbance forces and moments, with F,t assumed to act at F*. In equation form,
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F= F,. +F,, +__F,t,

6

(Eq. 16)

becomes

i=1

and M =M,. +M,¢ +M___,,+M(I, (Eq. 18)

6

where M,. = E, r F*Bi)< EI., (Eq. 19)
i=1

and M,¢ =r • xF,, (Eq. 20)--F F. -- •

More explicit expressions for FI_ and F,, will now be developed. If the actuator has coil

current I,Z,, length L,, and magnetic flux density Bi_ i, then the associated actuator force

F I. =-IikiBiI_i x/}i. (Eq. 21)

Assume a translational stiffness K£ 'j in the _j direction for an umbilical elongation in

the _, direction, and a corresponding translational damping C]f. Assume also a translational

stiffness K,i,:j in the _ direction for a positive umbilical rotation about the _/direction, and a

con-esponding translational damping C[,] . Let F b represent the umbilical bias force, exerted by

the umbilical on the flotor in the home position. Then the total force of the umbilical on the flotor

becomes

j=l i=1

3 3

-I- E EKti'rJ[FIS_'s-i]SJ

j=l i=1
33 1}ij

(Eq. 22)

+F b ,

where F,. = ZFI. ; (Eq. 17)
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where the vector F/So represents the rotation about F of the flotor, relative to the stator, fiom the

home orientation. Equations (17), (21), and (22) now provide expressions for F,. and F,, that

can be used in Equation (16) for substitution into Equations (14) and (15).

As with F i. and __F,,above, M__, can also be expressed in more explicit form, in analogous

fashion. Assume a rotational stiffness K_;.j and a rotational damping C,!j, about the _j direction,

for umbilical twist about the _idirection. Assume also a rotational stiffness K,!j and a rotational

damping C_ j, about the _jdirection, for umbilical extension in the _,direction. Let Ml, represent

the total umbilical bias moment, exerted about F*, by the umbilical on the flotor, in the home

position. Then the moment M,, can be expressed by the following:

-- i=l i=[ 7

(Eq. 23)

j=l i=1 j=l i=t L dt J "

Substituting Equation (21) into (19), and Equation (22) into (20) produces expressions for M,.

and M__,_/ respectively. These expressions, along with Equations (17), (21), (22), and (23) can be

substituted into Equation (15) to produce a more useful expression for "-/NoE"

In principle, one could select a set of umbilical elongations, elongation rates, rotations, and

rotation rates as the system states. However, since the translational form of Newton's Second Law

given by Equation (14) employs the acceleration __&*F*, it is more natural to choose states based

on rF/TF* rather than rF,,,F, ' . To accomplish this one must substitute appropriately for rr;,:,, and

its derivative into Equations (22) and (23). The pertinent relationship is
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r_;,/,_,=r .+ r . . + r ,-r,,hFh --FhF -F F,,
(Eq. 24)

Note that r . and " are constant vectors of equal magnitude and opposite direction in the
--F,,hFh r r'F,,

stator- and flotor-fixed reference flames, respectively; in particular,

r * * "El -F.F.
- t_;,_,Fh

r 4, * " _ _ "7

-- ICuhFh ] 2
r * * 7
-F,,j,Fh [-- r F F,, "--3

(Eq. 25)

It will be shown later that Equations (24) and (25) facilitate expressing the umbilical forces and

moments in terms of the following twelve scalar quantities: -F_,Fr* * .s,,̂ -_t V--&r , -

and S.l ,\lF/S0_).__i. These quantities will be chosen as system states, for the state-space
dt

description. It is also desired to include, as auxiliary states, the _, measure numbers of "/_NoF. [see

Eq. 15)], for control purposes. Then Equations (14) and (15) will yield the translational

equanons of motion in state-space form, provided that (as will be shown later) _I')_F* and }ZNoE

Xd2 { Sd2 {

--w * *) and (Ttz__NoEI, respectively. To this end, recall thatcan be expressed in terms of dt z V-FhV

No.)S and _'c_' have been assumed to be negligible in the frequency range of interest; therefore,

one has the following:

(r. \
/" .... "/
--FhF dt V-Fj,_: I

(Eq. 26)

Sd

/: " * - (£FhV*) (Eq. 27)
and -,% F -- _ "
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"" Sd2 (£NoF.) (Eq. 28)
Similarly, £NoE = dt'----T-_ •

Note that although the terms involving Urns and NOtS have been neglected in Equation (27) their

effects in Equation (14) could alternatively be considered as lumped together with "-/NoS. in gi,,"

Including these higher-order terms, Equation (13) would be rewritten as follows:

" - x .a_i_ =rN0S, ,- _ XrF_'E*--2 Nm dt ,-"1,_ -- -- - (Eq. 29)

Equations (14), (16), (17), (21), (22), (26), and (27) provide the basis for a state-space

form of the translational equations of motion, using as states the J, components of r _ •- -/_), F ,

and --_, In addition, for control purposes, low-pass-filtered
dt - dt

approximations of JaNo E [beginning with Eqs. (15) and (28)] will be used as auxiliary states. This

development will be presented later [see Equations (65) through (67)].

Rotational Equations of Motion

The rotational equations of motion are given by Equation (2) [or, equivalently, by

Equation (3)], where M_M_is defined by Equations (18), (19), (20), and (23). Consider the left-

hand-side of Equation (3). St will be shown that N czF =--'S'd2 (F/s__0) under the assumption that
- dt 2 '

No,)S and NotS are approximately zero.

Differentiating Equation (8), one can express the angular acceleration N___.F, in terms of

NcoS and sine as
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N__ _ (N_)+_ (,_-), _q.30>
dt - dt -

or, expanding, as

N(zF Nd urns + -- + x (Eq. 31)
- dt - dt - - -

Assuming, as before, that um_s = 0 and Nct.S _ 0, Equation (31) simplifies to:

U F Sd (sine). (Eq. 32)
-_ =7-'-

The rotation vector v/s0, defined previously, represents the rotation of the flotor, relative

to the stator, from the home position. (Conceptually, _-/s_0 is a free vector _ F/S_,, where

v/s 1__, indicates the positive direction of the rotation axis; and q_, the rotation angle about that

axis.) The angular velocity vector Stay is related to the rotation vector as follows [10]:

SmF Sd (F/s0) (Eq. 33)

Substitution from Equation (33) into Equation (32) yields the following:

_ =.,2,,,.(_<'_0),,N

-- dt 2
(Eq.34)

Substitution from Equation (34) into Equation (3) yields:

dt 2 = - -
(Eq. 35)

Assuming, as before, that No)S = 0_, one obtains:

_'2("'_+,-'.[,,,,-'_'_x(L._r)].
dt 2 = --

(Eq. 36)
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Linearization of Equation (36) about s(o;:=O yields the following form of the rotational

equations of motion:

S

d 2 (F/S__o)= I-I'M. (Eq. 37)
dt 2 = --

Substitution fiom Equation (18)into Equation (37) yields:

,7

dt 2 = --
(Eq. 38)

where (from before)

6

M___e = E,_rF% X Fi., (Eq. 39)
i=I

+E i,j S i,j SdKrr O_.Si_j --}- Crr --(F/So_)'_i S j q- Mv ,
j=l "= j=l dt --

(Eq. 40)

and M__,,t =rF.F, ' xF,,. (Eq. 41)

Equations (38) through (41), along with (21), (22), and (24) through (26), provide the basis for a

state-space form of the rotational equations of motion. The states are those defined previously.

Equations of Motion in State-Space Form

Define the following relative-position states:

" =r * * si, (Eq. 42)2( ai -- Fh F " --

SO that, EFt, F_ = XaiSl q- Xa2_S 2 -.1-Xa3_S 3 . (gq. 43)

Define next the relative-velocity states, xbi = kai. (Eq. 44)
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Differentiation of Equation (43), along with the useof Equations(44) and (26), leadsto the

following:

_'FtTF* = Xbl_ 1 + Yb2_ 2 "t- Xb3S3 . (Eq. 45)

A second differentiation, along with the use of Equation (27) yields:

IJFj*F* ---- '{'bill +'i'b2-S2 +'i'b3_3 " (Eq. 46)

Introduce the use of a pre-superscript in parentheses to indicate the coordinate system used for

Then Equations (43), (45), and (46) take the following respectivecomponentiation of vectors.

matric forms:

(S) r , , = I xal l

-FhF 1Xa2[=Xa '

(Xa3 J

(s)i'_;v* = L, = x_,

and (s) ./ , , .
_FhF =X b ,

where x, and xv are defined as indicated.

Define the relative-angular-position states,

x_i= F/so_"_-i,

so that F/So= xal El + xa2-s2 + xJ3s3-.-

Define next the relative-angular-velocity states,

Xei = JCdi ,

so that Sd- (F/S0)= Xel-St^ + Xe2__ 2 + Xe3,_ 3 ,

dt " -

(Eq. 47)

(Eq. 48)

(Eq. 49)

(Eq. 50)

(Eq. 51)

(Eq. 52)

(Eq. 53)



s d2 (F/S_)=Xel_l+Xe2_2+_'e3_3"and " "
dt _

The respective matric forms of Equations (51), (53), and (54) are then

[xd' l

(s) FIS_0= ]xd2 [ = Xd,

Lxd3)

(S) S E( F/So)= _-d = Xe ,

dt - - -

(S) S -_
d"

dt 2 - '

where x a and x_, are defined as indicated.

Equations (14) and (46) can be used to develop a state-space equation for Yl,.

express Equation (46) in measure-number form:

Next, represent by a d

unknown direct-disturbance force __Fd . In particular,

1
a_d = __ F d .

m

Then Equation (14) can be expressed as follows:

Equations (38) and (54) can be used to develop a state-space equation for y_.

express Equation (54) in measure number form:

17

(Eq. 54)

(Eq. 55)

(Eq. 56)

(Eq. 57)

First,

I .

Xbl

(S) j:_&F,* = _X;,2 = --Xb" (Eq. 58)
t--

{Xb3

the direct translational acceleration disturbance to the flotor, due to

(Eq. 59)

(Eq. 60)

First
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-, =_,,. (Eq. 61)dr2 xel

Next, represent by o:_ the direct rotational acceleration disturbance to the flotor, due to unknown

direct-disturbance moment M__,,. In particular,

-%l =/-1 "M---J • (Eq. 62)

Then Equation (38) can be expressed as follows:

.{,. = _s,{/_]. (_M_.,.+ M,, + M,¢ )+o: d }. (Eq. 63)

Define a rotation matrix S/Fo that describes a coordinate transformation from the flotor-fixed to

the stator-fixed frame, so that

Y2 = [S/FQ] --S2 (Eq. 64)

Then Equation (63) can be re-expressed as

/v = S/F Q {{_,i-, [_F)M,, + {F'Mi,,.r + {F)M,. ]+ {F_a_ } , (Eq. 65)

where {F'I is a central inertia matrix of the flotor, for _./_' 9)2 , and ---f3"

To approximate {S)_NoL. using states, define % by

[oi, ('_)_,v0 E = _,. +m h x., (Eq. 66)

for some high value of circular frequency ro h . Taking the Laplace transform,

L{IS"rNoE}=(S+m--_J_ ' S{E,.}, (Eq. 67)

_ O)h S=
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so that X,.--(S)FNoE_-- , (Eq. 68)

for m << rot, •

Equation (15) can be expressed, in expanded form, as

Note that Equation (69) is a vector equation; to express it in measure-number (i.e., matric) form,

one must employ a matric notation for the cross product. To this end, obsmwe that, for arbitrary

vectors

and

r, : x,.[, + YtJ_2 + ='._3 (Eq. 70)

^

r2 = X2J_l__+ Y2'f2 + Z2f__3' (Eq. 71)

the cross product can be expressed, in measure-number form by

(F)(r[ X r2) =

0 -zl Yl
z 1 0 -x t

--Yl Xl 0

Ix2]Y2 •

Z2

Represent the above skew-symmetric matrix by (F) r 7 [11].

(Eq. 72)

Using this notation, Equation (69)

+ (S_ad) (Eq. 74)

and solving for _c, to yield the following:

-% x..

can be rewritten as follows:

(.S'_NoE= ,,_l(s_(ff_, +F,,)+ S'rQ( [IF)l-'_ {E'(M,.+M,+M,,, )]×<'rF=r+ O__d×,_'F_E)}+ ¢v'a_d._--. _ : (Eq. 73)

A state equation for .A,.can now be formed by substituting from Equation (73) into Equation (66),
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Six of the state equations for the system are given by Equations (48) and (56); nine more,

by Equations (60), (65), and (74). The latter nine are written in terms of the various forces and

moments acting on the system. The force loads are defined in vector form by Equations (17),

(21), and (22); the moment loads, by Equations (39) through (41). In the following section these

loads will be written in measure-number form and expressed in terms of the states, for substitution

into Equations (60), (63), and (74).

Force Loads

In matric form, the {h control force (Eq. (21)) can be expressed as

c_ / [ _s)^× S/FQBi(F Ill .F,= -g, L

Define the control input u,, associated with the it/' control force, by

tt i = I i.

The resultant control force becomes,

(S)F c = Z (3) i_ 'F, = F, t!,

(Eq. 75)

(Eq. 76)

(Eq. 77)

i=1

where F, and 12are a row vector and a column vector, respectively, defined as indicated.

Introduce the following skew-symmetric, small-angle representation for the coordinate

transformation matrix [10, (p. 352)]:

S/FQ= (I + (s, F/S_0×), (Eq. 78)

where I is the identity matrix. Then, substituting Equation (78) into Equation (75), one has

(S)Fi. = - Li /-i . 0Eq. 79)



21

Expanding,

(S) i [(S) (F)& (S)^x (F)&x (S) FIS l__F. =-L, B,I, Z x _& - /_, _Bi _O . (Eq. 80)

Next, substitute into Equation (80) from Equation (55), and represent the current I i as the

sum of a bias value IR, and a fluctuating value 16 . This yields the following expression for the

control force:

,s)^x ,F)__ ( )C_)^x (F)ax(S)E_i. =-Li Bi Ii li B__i+ Li Bi IB_ + I6 /i ___Bi X a . (Eq. 81)

The bias current is the current portion necessary to counteract the bias force and moment required

to hold the flotor at its home position, and the fluctuating current is the additional portion

necessary for control. Assuming that the fluctuating current and the rotational states are small,

Equation (81) linearizes to the following:

(S)Fic = -- Li Bi I--i gi Ii + Li Bi IB, l-i 1:ti X d . (Eq. 82)

The resultant control force can now be expressed as follows:

8

(S)F ," = Z (S_Fi, = F,.,, Ll + F,.dX,i, (Eq. 83)
i=l

where (as before) ui = li, (Eq. 84)

and F,,.,,, and F, d are defined as indicated, fl-om Equation (82).

Turn next to the umbilical force. Equations (22) and (23) can be expanded into matric

form, in terms of the selected state variables as follows. Recall from Equation (25) that

(s) r , = _(F) r , (Eq. 85)
-- Fuh Fh -- F Fu

Then Equation (24) can be represented as follows:
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(s}r (s) +(SIF Q_FuhFu = r.FhF, -I )(F}r--F*F u "
(Eq. 86)

Assuming small angles Equation (86) can be re-expressed as follows:

(S) +(S) FIS x (F) F . ,
(S)rF,,_,F,, = rF_ , O_ -F F,

(Eq. 87)

or, in terms of the states,

(S) rFuhFu =Xa--(F)F_.;.F u Xd. (Eq. 88)

' 'Cr )One can also represent bl,h_, in terms of the states, as follows. First differentiate Equation
dt

(24), with the stator frame assumed fixed:

= r ** + S(OF
dt F,,_,V,, FhF -- XrF*F " "

(Eq. 89)

Substituting from Equation (34) into Equation (89) yields:

Sd _rF,,,,G )= Sd(r . . )+ Sd (F/SO)xr .
dt dt _-- Fh F dt - - _ F,,

(Eq. 90)

or, in terms of stator-fixed coordinates,

[(S) S )] x' " (r . .)+dt _- Fhe dt S/FQ Or) r • ]. (Eq. 9t)-V F,,

Using Equation (78), Equation (9 l) can be re-expressed as

I+ (s) FIs0× ) (F) r • . (Eq. 92)
- -F F,,

Substituting with state variables,

x x (F)
= x b + x e l+x d r . ;

dt - - -F F.
0Eq. 93)
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or, assumingthestatesaresmall,

(S)Sd_r)_ = _ (F) ×
dt FuhFu X b --F Fur, X ,. . (Eq. 94)

Finally, the umbilical force, Equation (22), can be expressed in terms of the states by substituting

fiom Equations (88) and (94):

(5) F--u = -- Ku Xa - rF*_, Xd F VuX -- K,,. x d - C,,. x. + CV)Fb (Eq. 95)

where

<.' K,',.'-x2,,-_
x,,= x,y x),,2 x,y',

K,-_,,' x,y K,',.-'
(Eq. 96)

c;.' c,',,=d"]q, = q2,, cY c;3l,
q3,.,c,3,,_c?,.-'j

(Eq. 97)

Klr

' K:,::<:3]= _2., _._x,:..3lKfr '_

K,-_,' K;?:2 K,,_,-_]
(Eq. 98)

and, r ]c_,:' c,'/ c,',:_
c,,--cy C,2r2 C,?.

k C3r ', Ct;3_'2 q3r'3

(Eq. 99)

Collecting terms, one obtains the following:

(S_F,, =-K,x,-C, xt,-{K,_-K,, (r) × (r) × ¢s_ (Eq. 100)

OF _s_,, : F,,,,,x_,+ F,,,_,x_,+ F,,,dxd + F,,,,,x,+ (S>F__, (Eq. 101)

where F,,,a. F,,a,, F,,,d. and Fur_ are constant matrices defined as indicated.
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Moment Loads

The ia' control force, F[, exerts on the flotor a control moment,

i × i.M,. =rF*8, F,

Substituting from Equation (21),

(Eq. 102)

i-r * x(-IiLiBiI ix/?,)" (Eq. 103)mc ----F Bi -- -- '

or, in measure-number form,

104,M__,.=(- libiB_)IF_
r F*B,

Reversing the order of the second cross product above, and using the small-angle approximation

to s/F Q [Eq. (78)], along with its orthogonality property, one obtains the following:

M,=(I,L_B) rF*,, _/, (Eq. 105)

Expanding, and reversing the order of the cross product (s) F/s0× (s)__,, one has

M,.=(I L, B,) E_"e, B, ^ +(IiL, B,) _F, × _F (s_ ^× (Eq. 106)

(Eq. 107)

(Eq. 108)

0Eq. 109)

Since I, = 18, + I<,

and since IF, and x<_, have been assumed small, Equation (106) reduces to

or L,B, rF.s, 13, ^ I, + LiB, (F)r_,Bi (F)ex (S) ^x"]

Equation (109) can be written alternatively as

(F)M___i_= M,(,, I i +M,( d x a , (Eq. 110)
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for M[. i and M,! d appropriately defined. Then the resultant moment due to the coil forces can be

expressed as

8

(V) M . = £ M i_, I, + M,{+jx,., = M,.,, L_ + M,_j x j, (Eq. 111)
i=1

where (as before), u i = Ii, (Eq. 112)

and M,,, and M d are defined as indicated.

The umbilical force F,, exerts a moment M,_ I on the flotor, as defined by Equation (20).

An expression for {F)M,¢ is obtained by appropriately incorporating (s)__F,,from Equation (101)

into Equation (20):

(F) IAr (F) × F/S+",[I_
IV1 uf = rF,Fu _t utaX--a -t- CabXb + Cad£d + CaeXe] • (Eq. 113)

The moment r xFv, due to the bias force F_,. has been omitted from Equation 013) since it
- F'F,, --

is considered part of the bias moment M e in Equation (23). Upon linearizing F/S Q as before,

one can rewrite Equation (113) as

(F) M (y) x F/goX ]= r* (I_(S) / [F,r, ya+F,,+j, yb+F,,mA. +F,,,_x.] (Eq. ll4)
--"f - V F,,

Equation (114) can be simplified under the assumption that the states are small quantities:

<F).× [F,a_x:+F,,,,£ b +F:,dXd+F,m.x,: ]. (Eq. 115)(F)M___,¢= L V*_i,

Substitution of the definitions for F..,, F,. v, F,,m , and F,,r,., given by Equations (100) and (101),

into Equation (115), yields

(v) M (F)rX [-K,,x -( K,, -K, (r)rX ) -C,,x_ ( C,r-C,, (v)'x ) ]--uf --- - F*Fu - .F*Fu &'el -- - F Fu•. _X,. , (Eq. 116)
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or, expanding,

(F) M =
-- uf I 1 ,I 1(F). x V_ (V) rX • Xd-- r • K u x_a + K,.- r , Art (F)rX,

--F F. [_ -F Fu -F F. -F Fu

- r . + - r , t..tr Ctt (F)rX, Xe
L --F Fu Ctt Xb -F Fu -- rF,l,], -F 6, --

(Eq. 117)

The vector M,, can also be expanded into matric form as a function of the state variables

by substituting into Equation (23) from Equations (88) and (94), to yield

( 0(<_M_,,=F/SQ_-K u-C,.,.x¢-K, x(,-(V}r ×. £d-C,, x a (F)F. Z_. ___,j (Eq. ll8)
L rr-d - -- -F Fu -F Fu '

where K rr

I K].;2 K,!r2 K].;3

K rr K,7,7= [ K r2rI 2,2 ,3

K rr K r,:"[ K r3r, 3,2 a 3

CEq. 119)

1 2 1,2 1,3 1

C r'r C rr C rr

C,_j.= C,2;' C,_:2 C,2./3 , (Eq. 120)

C;' c;_;2 <7

IK_;2 K);2 K_;3 J

Kr'=[K'2/' K"2"2 K'2"_ '1 (Eq. 121)K ;.,'_ K ;]'_LK-_,.' _"

[c_;_ c,';: c¢;'tand Crt=lCr2t '1 C 2'2 C,_ '3 . (Eq. 122)

Lc,_,,'c;',,e c_,,'

Use of Equation (78) with Equation (118) yields

{F)M,,:(I-(S)F'S_)[-KrrXd-C,.,..y,.-K,.,(yo--(F>r_FYd)--C,.,(Xj,--IV'×rF.F, ' x "_" (S)M___,,I)• . (Eq. "_3)-

Assuming that the each of the state variables is small,
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i )/ )<F)× " -C. _'_- r_F%a__ + (S>M_,(F)M,, = -K,.r_" d- Crra_"-Kr, x - r_f%x d

Combining Equations (117) and (124), one obtains

(F) x -C. - r_F.F,%t )x_
(F)Mu+ (F) M = -Krt Ktt x a +

-- --uf -- EF*Fu

(F). x -- Ktr + r ,+ K n r . -K,. r (F)r %-F F_, [F*F u Iktt --F F.

+ C"t (f)r;*F,,- Crr- -Fr *F,,%+ -Fr*C, %' *5, X.

+ (S)ib.

Or_

(F)M_M_,, + (F)M,,I = M,,I, , x,, + M,a , x_ + M,,. a x d + M,,,., x,. +(S)M__M_v,

for M ,,,, , M ,,a, , M,,. d and M .r e appropriately defined.

(S), .x
+ mb£ a. (Eq.124)

+
(Eq. 125)

(Eq. 126)

State Space Equations

The force loads (F,. and__F,, ) and the moment loads (M,., M,,, and M,:f ) have now been

expressed in measure number form [see Eqs. (83), (101), (1 ! 1), and (126)] in terms of the state

variables. These expressions can now be used to obtain the final, expanded form of the linearized,

state-space equations of motion.

Beginning with the state equation for xz,, substitution from Equations (83) and (101) into

Equation (60) yields

.__i.o=(1 F,,1./£. +(1 1 (mF"") xe +(IF,,,)u_(S3gi +CS__ad m..(Eq ' 127)

Recall that the control, E, is a column vector of actuator cunents I,, each of which is the sum of a

bias value It__ and a fluctuating value IF. Then one can define a new control Ld such that,
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1!=/8 +Ll , (Eq. 128)

where /e is a column vector of actuator bias currents and _d* is a column vector of fluctuating

currents. Since the bias current is defined as the current necessary to counteract the umbilical bias

loads, substitution from Equation (128) into Equation (127) yields the following linear state

equation for x_,"

1 . _ (S)a

Turning now to the state equation for x_, substitution of Equations (l 1 l) and (126) into

Equation (65) results in the following expression for __',"

• S/F._(F)I-I[M_'_= _ L ,,,_,=a+M,,,i,£l,+(M,,ra+M,.a)xa+M,,_x,. +(s)M---v+M,,,u ]+S/FQ(F)oc,,-_ , (Eq. 130)

or, in terms of the new control u*,

2_=S/FQfF)I-'[M,t_,X_, ' +M,,,t_x_, +(M,r(I +M,.,,)xj +M,,._x.+M,.,,j*] +S/F O 'Flea. (Eq. 131)

Using Equation (78), and combining terms, one obtains

Assuming small state variables, small control, and small direct angular acceleration disturbances,

Equation (132) reduces to the following linear state equation for L"

Turning now to the state equation for x., substitution from Equations (83), (101), (111)

and (126) into Equation (74) results in the following expression for _"
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¢k_,.=cob. 1 F,,,,,-s_FQ <)re. E I M.,. A'_.-coh£,:
L ltl

+COb (F, td+_.d)--SIFQ #SF'E'F'I4(M, rd+M,'d)_d+COh F,,e--SiFQ(_'t_'E ,,,-,'j_,"

+_o,,(!F -"_Q%x_._'_'r'M@
_I?l

- \m) rF'E) _--d--W_t _ rzE '

or, in terms of the new control u,

(Eq. 134)

i1 / I:-- ,.a _ F --s/Fo (r) x (v)i-i M --coh_ci__,=cob F --S_Fo(r'_r E (_-'l-Id x,,+co h ,,,l, _ r-rE ,,.,
.... ""2 \mm

(F)l-lMurt X e(v)I-i(M,,_d+M,,,) £<,+cO,, r,,..- !d rre , _+co,,--(F,,,d F d)-- Q rrE
I?l C It l

(F) x 1
SlF (F)I-IM,. U*

+co,,( I F,,- O r_r_ . _

+c°h _S_aj _CO_,(SIFQ,F_× _r> ._ rFE) _%.

(Eq. 135)

Using Equation (78), one obtains

FIS x (F) x
._t:%[ l_,,;-(l+(s) FiSo×),F_rX (tOF,M r l _ (z+_,, <_'r'M

X " <,-,,-,Mq,-- ' -r. ' J- Lm < - -rF_ ,,,<_j:z,,(Eq. 136)

+% !g,,- ij s_

+%<S)a4 03h(l+(S) F/SoX](l_r x (n .- - I -FE -c5#"

Assuming small states, small direct disturbances, and small controls, Equation (136) reduces to the

following linear state equation for x,."
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[_1 " [ 1F (r>_ (r'I< l']

-_COh[I (F,,,,,,,+F,.d)-- _'_r_;.E(nI-_ (M,,.d+M,v.)]x,:

+CO,,[ M,,r.]xe+CO,,[1F.-
Lm - . j Lm

(Eq. 137)

A state-space representation of the system is given by Equations (48), (129), (137), (56),

T T T T 7"] 9x= x, x,, x,. x d x,. , (Eq. 138)

and (133), for state vector

-- = ITu* [I h I Fz It. 3 Ira. I,_ 5 IF,,

and control vector

(Eq. 139)

In summary, the final form of the linearized state-space equations of motion are as follows:

_, = Xb ' (Eq. 140)

-i-a=[1 F,,,Iy_, +I IUn F,,,_Ij_xb+[l(F,,c,+ F,.d)]X d +[--1Un F,,,.1J_x_+[Iun F,.,,1J_u*-(S)ai,,+(s'g d . (Eq. 141)

2,. mh F,r,- (F)r× M,,,,, x,,+O)h -Fe- = -FE m ,,a, M,,a, k), -%£,.

1

+ O],,,[_t( F,a,: + F,.,l)- _'lqr_XFE (F}l-l (M.rd+Mcd)]_'d

(F) x (F)rX (F)o_

+O)hLTnr''''7 -F'F. {r_l-t . 1 F (F)I-_M,.,,] if*+mh {s)gd --ink ,

___'d_- Xe

and

(Eq. 142)

(Eq. 143)

(Eq. 144)
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Verification of State-Space Equations

The linearized state-space equations of motion for g-LIMIT, given by Equations (140)

through (144), were verified by comparing the linearized-system open-loop response to the open-

loop response of a nonlinear "truth" model, for various inputs. Two input scenarios were used for

these comparisons. In the first scenario (Scenario # 1), the flotor was excited via an actuator by

an arbitrary force-plus-torque pulse combination, to result in a fully coupled six-degree-of-

freedom response. In the second scenario, the flotor was excited via an actuator by a force pulse

in the + z stator-fixed direction. For each scenario the motion of the linearized system was then

compared with the response of the nonlinear model. It was found that the nonlinear and linearized

models exhibited essentially identical responses. For each scenario, the potential and kinetic

energies were plotted as functions of time. When the systems were made conservative (i.e., with

the umbilical damping removed) it was shown that the total energy was constant, as expected.

The nonlinear model was constructed from the nonlinear form of the equations of motion,

r/s
Equations (1) and (3). Employing the quaternion representation q of the transformation from

stator-fixed to flotor-fixed coordinates, the following kinematic equation was used propagate the

rotational motion of the flotor [12]:

d gF/S I 1
-- dt q-J=?

where S_F =

S _t 7 F/ S q, (Eq. 145)

0 0) 3 -0) 2 (I) l -

-0) 3 0 0)1 (1)2

(02 -0)1 0 (03

--(D l --(&/2 --0) 3 0

(Eq. 146)

and mi=sm__ F .)_. (Eq. 147)
--t
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Equations (16) through (23) were used, in their respective nonlinear vector forms, to compute the

forces and moments in the nonlinear model. The small-angle approximation

F/S r_ ,,
121"5_'i =2qiq4 (i=1,2,3) (Eq. 147a)

was used in the third summation terms of Equations (22) and (23), where the factors qi are as

defined by F/Sq=[qt q2 % q4] r (Eq. 147b)

(This is a reasonable approximation for the expected range of angular motions of the flotor relative

to the stator.)

Representative flotor and umbilical parameters, shown in Table 1, were used for the

simulations. There are three umbilicals included in this model of g-LIMIT. The translational and

rotational stiffness matrices for each umbilical were assumed to be diagonal along an umbilical-

fixed set of coordinate directions. Similarity transformations of these diagonal matrices were

performed assuming a coordinate transformation from each local umbilical-fixed reference frame

to the stator-fixed frame. First, a coordinate rotation about the stator-fixed +Z axis of 120 deg and

240 deg was performed to align umbilicals #2 and #3, in their respective home locations. Then, for

each umbilical, a 20-deg rotation about each coordinate axis was used to represent an arbitrary

misalignment of the diagonal-stiffness directions to the stator-fixed directions. The translational

and rotational damping matrices were assumed to be proportional to the stiffness matrices with a

damping ratio of 3% used for all of the vibrational modes. The resulting umbilical stiffness and

damping matricies, given below by Equations (148) through (159), were used in the simulation

study. The superscript-in-parentheses notation denotes the umbilical identification number for

each of the three g-LIMIT umbilicals. All stiffness and damping translation/rotational cross-terms,

i.e., .K_,,__°, K_,_;_, (7_,.(°, andC, _;_., were considered to be zero.



33

28.49 -2.46 8.301gtt (1)= -2.46 26.73 -5.851

8.30-5.85 44.77J

N/m, mq. 148)

25.04 0.47 0.91t
K,(2)= 0.47 30.18 10.12 / N/m,

0.91 10.12 44.77J

(Eq. 149)

29.30 1.99 -9.221
K,,°)= 1.99 25.92 -4.27 I

-9.22-4.27 44.77J

N/m, (Eq. 150)

Ct I) =

1.26 -0.04 0.16

-0.04 1.22 -0.11

0.16 -0.11 1.58

N / m/sec, (Eq. 151)

1.19 0.00 0.01

0.00 1.29 0.20

0.01 0.20 1.58

N / m/sec, (Eq. 152)

Ctt(3) = I

1.27 0.03 -0.18]

0.03 1.21 -0.08 I N/m/sec,-0.18 -0.08 1.58

(Eq. 153)

/_r (1)
r

1.86 0.09 -0.33

0.09 1.93 0.23

-0.33 0.23 1.20

N-m / rad, (Eq. 154)

1.99 -0.01 -0.03

-0.01 1.79 -0.40

-0.03 -0.40 1.20

N-m / rad, (Eq. 155)
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1.82 -0.07 0.361-0.07 1.96 0.17[
0.36 0.17 1.20J

N-m / rad, (Eq. 156)

I 0.055 0.001 -0.012 ]
Crr(1)= 0.001 0.063 0.010 N-m/rad/sec,

-0.012 0.010 0.033

(Eq. 157)

(2) I 0.062 0.002 -0.002]
C_r = 0.002 0.056 -0.015 N-m/rad/sec,

-0.002 -0.015 0.033

(Eq. 158)

and

[- 0.059 -0.004 0.014

rr(3)---_| -0.004 0.059 0.005c

0.014 0.005 0.033

N / m/sec. (Eq. 159)

In addition to the parameters listed in Table #t the actuator currents were set to initial bias

values. These bias cunents were required to produce a bias force and moment to move the flotor

from its assumed relaxed position to the home location. The flotor relaxed-position was assumed

to be 2 mm from the home-position, and to be misaligned by approximately 2 deg about each

stator-fixed coordinate axis. This resulted in the following set of bias current values:

I,,_= -0.264 A, IR4= -0.1593 A, and Its= 0.123 A.
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In Scenario #1 the six actuator current pulses were chosen to approximate combined

impulsive force loads in the +Z stator-fixed direction, and moment loads about the +X and +Y

stator-fixed directions. These loads were sized to produce a total energy output of 0.003 N-m

equally divided among the three loads. The current pulses were shaped as one-minus-cosine

functions to provide easily integrable inputs with no temporal discontinuities. The pulses were

initiated at 1 sec and lasted for a 0.1-sec duration. Table #2 shows the integrated values of the

actuator current pulses for Scenario #1.

Figures 2 through 6 show comparisons of the simulation results for the linear state-space

model and the nonlinear "truth" model for Scenario #1. As shown in these figures the linear model

responses match the truth model very well for all of the state variables. The state responses evolve

in time with the expected frequency and damping. The en'ors between the linear responses and the

truth-model responses are shown in Figures 7 and 8. These relatively small errors, assumed to be a

result of the linearization process, diminish as the system response decays. Figure 9 shows a plot

of the flotor kinetic and potential energy for Scenario #1. As expected, the impulsive loading

results in an initial translational kinetic energy of 0.001 joules and a rotational energy of 0.002

joules. The kinetic and potential energies oscillate out-of-phase, and the total energy dampens out

exponentially.

A second scenario (Scenario #2) was simulated to demonstrate that the model conserves

energy when the damping matrices are all set equal to zero. In Scenario #2 the six actuator-current

pulses were chosen to approximate an impulsive force load in the +Z stator-fixed direction only.

The impulse moments used in Scenario #1 were eliminated from the actuator loading. As in

Scenario #1 the loads were sized to produce a total energy output of 0.003 N-re. In this case the

total energy input to the flotor was along the stator-fixed +Z direction. The current pulses were
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shapedas one-minus-cosinefunctions to provide easily integrable inputs with no temporal

discontinuities.Thepulseswereinitiatedat 1 secandlastedfor a0.1-secduration.Table#2 shows

the integrated values of the actuator current pulses for Scenario #2.

Figures 10 and 11 show a comparison of the flotor output energy responses for Scenarios

#1 and #2, respectively. The potential and kinetic energy responses differ between the two

scenario, due to the difference in the impulsive loading. However, the total flotor energy remains

constant at the expected value of 0.003 joules for each of the scenarios, ariel application of its

respective impulsive loading, at 1 sec. This demonstrates that the model conserves total energy at

the appropriate level for an arbitrarily chosen actuator loading.



37

Table 1 - g-LIMIT Parameters

Parameter

FlotorMass

Flotor Moments of Inertia

Flotor Products of Inertia

Symbol

Ill

Value

15.12 kg

Ixx

Iyy

Izz

Ixy

0.50 kg m z
-)

0.62 kg m-

0.18 kg m I

le-4 kg m

Umbilical Locations (F)

(3 Umbilicals)

lyz

2
-i e-4 kg m

2
-8e-4 kg m

[0.0 -0.12 -0.032] m

[0.1 0.06 -0.032] m

[-0.1 0.06 -0.032] m

Actuator Current Vectors (S)

(6 Actuator Coils)

Actuator Magnet B-Field Vectors (F)

(3 Actuator Magnets)

(s) fi

(F) ,,

[0.0 0.0 1.0]

[-1.0 0.0 0.01

[o.o o.o 1.o]
[0.5 0.866 0.01

[o.o o.o 1.o1
[0.5 -0.866 0.01

[o.o 1.o 0.o]
[o.o 1.o o.o1
[0.866-0.5 0.0]

[0.866-0.5 0.0]

[-0.866-0.5 0.0]

[-0.866-0.5 0.0]

Actuator Constant (L i Bi 1.0 N/Amp

Table 2 - Actuator Current Pulse Values

Scenario #1 Scenario #2

[Amp-sec] [Amp-sec]

Actuator #1 Cun'ent Pulse 0.0 0.0

Actuator #2 Current Pulse -0.231 -0.10

Actuator #3 Current Pulse

Actuator #4 Current Pulse

Actuator #5 CmTent Pulse

Actuator #6 CmTent Pulse

0.0 0.0

0.193

-0.139 -0. l0

0.0 0.0

-0.10



Relative Position of Flotor CG, (S)RFhFg

0 4 r ...............................................................................................................t .........................t............/t t , .... -1, , I , , , i , - TruthMode,,
0.2I-.......................r.....................I.........................!........................!.................i-.......................1-1 ............ Linear Model [-1

-- 0 ......................... T.................................... _.............. ,

-0.21-_ ........"!.........................t .................-1
I i i i i i i i i |/

-oA ........................l ......................l ...........................1:......................I............................i..................:4 ..........................i............................i .........................-i......................--I
0 2 4 6 8 10 12 t4 16 18 20

0 4 P ....................._.......................t .....................................................!........................................................_..........................4............................t .........................4 .......................
• ! i i t

/ | l i I i _ i I
o2F........................._........................t.........................i ..........................i........................F.......................i ..........................._......................}............._ ....................

- oF..........._i_ ........_ ........ -t---- ,..... w ..............I......... r....
^hi i ] l i : i ! l :
-u,z_.........................r............................................T.........................T......... t .............i ........................:..........................t.......................f......................

! i _ i i ! !
-0.4k ........................._.....................i.............................................:_.......................................................|.........................l..........................[.........................|.......................

0 2 4 6 8 10 12 14 16 18 20

0 4 P ......................._".......................* ..........................!................................................!........................._.....................4...........................t......................f...................
I • .| A_ ...t : ! ' , _ I '

0 2 F .........I.---.--_.................../--._........................-_,........................F .................I-........................._..........................a,.......................r......................_,.......................

, , , ,
-o.2I---................._-V._..I .......................t.............-r-....................1........................_..............-4,................
I iw i l i i _ i l

-o.4P........................i......................i.........................i.....................................::..........1.:==--.:::-i..........................i............................I.......................i:------:...........
0 2 4 6 8 10 12 I4 16 18 20

33me [sec]

Figure 2. Flotor Position for Scenario #1
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Relative Velocity of Flotor CG, (S)VFhFg
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Figure 3. Flotor Velocity for Scenario #1



Relative Acceleration of Flotor CG, (S)AFhFg
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Figure 4. Flotor Acceleration for Scenario #1
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Figure 6. Flotor Angular Velocity for Scenario #1
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Concluding Remarks

This paper has presented the derivation of algebraic, state-space equations for the

Glovebox Integrated Microgravity Isolation Technology (g-LIMIT). The states employed include

payload relative translational position (x,,) and velocity (x b), payload relative rotation (_,,) and

rotation ,ate (x.), and payload translational acceleration (x,.). Feedback of x,, corresponds to a

change in effective umbilical translational stiffness, where the effective umbilical is assumed to be

attached at the flotor center of mass. Similarly, feedback of xt,, xj, or x_ con'esponds,

respectively, to a change in effective umbilical translational darnping, rotational stiffness, or

rotational damping. Likewise, feedback of payload translational acceleration causes a change in

effective payload mass. Thus, a cost functional which penalizes these states produces intuitive

effects on system effective stiffness, damping, and inertia values.

The acceleration states can be selected to pertain to any arbitrary point E on the flotor.

This allows an optimal controller to be developed which penalizes directly the acceleration of any

significant point of interest, such as the location of a crystal in a crystal-growth experiment.

The equations have been put into state-space form so that the powerful controller-design

methods of optimal control theory (e.g., Ha synthesis, H synthesis, tt synthesis, mixed-y

synthesis, and ,u analysis) can be used. References [7], [8], [13] and [14] detail the H 2 optimal

controller design approach used for g-LIMIT, and Reference [15] describes the insights gained

from a single-degree-of-freedom case study.

The linearized state-space equations have been verified against a nonlinear "truth" model

in a simulation study. The state responses from the model were shown to agree very well with the

"truth" model for a set of parameters representative of the g-LIMIT configuration. Additionally, it
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was shown that flotor kinetic and potential energy responses were as expected, demonstrating that

the model conserves total energy for an arbitrarily chosen impulsive actuator loading.
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